Oxidant activity in skeletal muscle fibers is influenced by temperature, CO2 level, and muscle-derived nitric oxide.

نویسندگان

  • Sandrine Arbogast
  • Michael B Reid
چکیده

Free radicals are produced continuously by skeletal muscle fibers. Extracellular release of reactive oxygen species (ROS) and nitric oxide (NO) derivatives has been demonstrated, but little is known about intracellular oxidant regulation. We used a fluorescent oxidant probe, 2',7'-dichlorofluorescin (DCFH), to assess net oxidant activity in passive muscle fiber bundles isolated from mouse diaphragm and studied in vitro. We tested the following three hypotheses. 1) Net oxidant activity is decreased by muscle cooling. 2) CO(2) exposure depresses intracellular oxidant activity. 3) Muscle-derived ROS and NO both contribute to overall oxidant activity. Our results indicate that DCFH oxidation was diminished by cooling muscle fibers from 37 degrees C to 23 degrees C (P < 0.001). The rate of DCFH oxidation correlated positively with CO(2) exposure (0-10%; P < 0.05) and negatively with concurrent changes in pH (7.0-8.5; P < 0.05). Separate exposures to anti-ROS enzymes (superoxide dismutase, 1 kU/ml; catalase, 1 kU/ml), a glutathione peroxidase mimetic (ebselen, 30 microM), NO synthase inhibitors (N(omega)-nitro-l-arginine methyl ester, 1 mM; N(omega)-monomethyl-l-arginine, 1 mM), or an NO scavenger (hemoglobin, 1 microM) each inhibited DCFH oxidation (P < 0.05). Oxidation was increased by hydrogen peroxide, 100 microM, an NO donor (NOC-22, 400 microM), or the substrate for NO synthase (l-arginine, 5 mM). We conclude that net oxidant activity in resting muscle fibers is 1) decreased at subphysiological temperatures, 2) increased by CO(2) exposure, and 3) influenced by muscle-derived ROS and NO derivatives to similar degrees.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CALL FOR PAPERS Oxidative Stress Oxidant activity in skeletal muscle fibers is influenced by temperature, CO2 level, and muscle-derived nitric oxide

Arbogast, Sandrine, and Michael B. Reid. Oxidant activity in skeletal muscle fibers is influenced by temperature, CO2 level, and muscle-derived nitric oxide. Am J Physiol Regul Integr Comp Physiol 287: R698–R705, 2004. First published June 3, 2004; 10.1152/ ajpregu.00072.2004.—Free radicals are produced continuously by skeletal muscle fibers. Extracellular release of reactive oxygen species (RO...

متن کامل

Nitric Oxide is Necessary for Diazoxide Protection Against Ischemic Injury in Skeletal Muscle

Ischemia reperfusion injury (IR injury) is a common problem in clinical conditions. Researches have frequently revealed that ATP- sensitive potassium (KATP) channels and nitric oxide plays a role in protection against ischemic injury in skeletal muscle. The present study aimed at evaluating the possible link between this two pathways. Sixty-eight male wistar rats, were pretreated with saline, d...

متن کامل

TNF signals via neuronal-type nitric oxide synthase and reactive oxygen species to depress specific force of skeletal muscle.

TNF promotes skeletal muscle weakness, in part, by depressing specific force of muscle fibers. This is a rapid, receptor-mediated response, in which TNF stimulates cellular oxidant production, causing myofilament dysfunction. The oxidants appear to include nitric oxide (NO); otherwise, the redox mechanisms that underlie this response remain undefined. The current study tested the hypotheses tha...

متن کامل

Nitric Oxide is Necessary for Diazoxide Protection Against Ischemic Injury in Skeletal Muscle

Ischemia reperfusion injury (IR injury) is a common problem in clinical conditions. Researches have frequently revealed that ATP- sensitive potassium (KATP) channels and nitric oxide plays a role in protection against ischemic injury in skeletal muscle. The present study aimed at evaluating the possible link between this two pathways. Sixty-eight male wistar rats, were pretreated with saline, d...

متن کامل

Inhibition of NADPH Oxidase May Promote Exercise Endurance

Repetitive muscle contraction is associated with increased superoxide production in skeletal muscle. 1-8 There is considerable evidence that muscle fatigue during prolonged exercise is associated with oxidant stress in muscle fibers, and that this stress is indeed partially responsible for the fatigue. Thus, pharmacological strategies which depress the antioxidant defenses of muscle fibers acce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 287 4  شماره 

صفحات  -

تاریخ انتشار 2004